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HeBREW UNIVERSITY

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH
AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of
[1] raised some interest. This paper is devoted to the following
theorem: If a (finite) connected graph has a positive real number
attached to each edge (the length of the edge), and if these lengths
are all distinct, then among the spanning® trees (German: Geriist)
of the graph there is only one, the sum of whose edges is a mini-
mum; that is, the shortest spanning tree of the graph is unique.
(Actually in [1] this theorem is stated and proved in terms of the
“matrix of lengths” of the graph, that is, the matrix [|a;|| where ay;
is the length of the edge connecting vertices 7 and j. Of course, it is
assumed that a;;=a;; and that a;;=0 for all 7 and j.)

The proof in [1] is based on a not unreasonable method of con-
structing a spanning subtree of minimum length. It is in this con-
struction that the interest largely lies, for it is a solution to a prob-
lem (Problem 1 below) which on the surface is closely related to one
version (Problem 2 below) of the well-k n traveling sal
problem.

ProBLEM 1. Give a practical method for constructing a spanning
subtree of minimum length.

ProBLEM 2. Give a practical method for constructing an un-
branched ing subtree of mini length.

The construction given in [1] is unnecessarily elaborate. In the
present paper I give several simpler constructions which solve Prob-
lem 1, and I show how one of these constructions may be used to
prove the theorem of [1]. Probably it is true that any construction

Received by the editors April 11, 1955.

' A subgraph spans a graph if it contains all the vertices of the graph.
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Kruskal's Algorithm

Process edges, adding edges to the MST smallest-weight first (do not
form a cycle on the process).

The algorithm creates a forest that eventually merges into a single tree.

Uses Union-Find for each separate component. Starts with |V|
independent components.

Combine sets by adding edges, which reduces the number of
components until there is only one.



Kruskal's MST
Algorithm

algorithm KruskalMST(G(V,E))

let Q be an empty min-heap
let UF be a Union-Find with |V| components

for each e€ E do
Q.insert(weight(e), e)
end for

T<{

while |T| < |V|—1 do
(u,v) « Q.getMin()

if u and v are not connected in UF then
T.insert((u,v))
UF .union(u,v)
end if
end while

return T
end algorithm




Kruskal's algorithm:

(D, F): 1
(A, C):2
(D, F): 4
(F.F):5
(A, B):5
(C,D):6
(B,D): 7
(D, E): 8
(C,E):10
(B, C): 12
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(C,E):10
(B,C):12
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algorithm KruskalMST(G(V,E))

let Q be an empty min-heap
let UF be a Union-Find with |V| components

for each e € E do
Q.insert(weight(e), e)
end for

T<{

while |T| < |V|—1 do
(u,v) « Q.getMin()

if u and v are not connected in UF then
T.insert((u,v))
UF .union(u,v)
end if
end while

return T
end algorithm

o(vD

O(|E[log(IE]))
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> O(IE|log(IV]))
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“One More Left

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories
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