

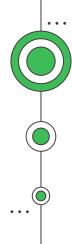
Kruskal's Algorithm

CS 251 - Data Structures and Algorithms

Note: Slides complement the discussion in class

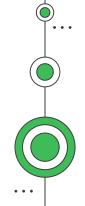
Kruskal's Algorithm A way to find an MST

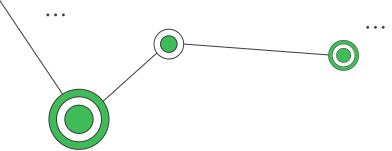
Table of Contents



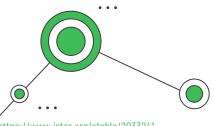
O1 Kruskal's Algorithm

A way to find an MST





Joseph B. Kruskal. "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem." Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48-50, 1956.



48

IOSEPH B. KRUSKAL, IR.

[Febru

- A. Kurosh, Ringtheoretische Probleme die mit dem Burnsideschen Problem über periodische Gruppen in Zussammenhang stehen, Bull. Acad. Sci. URSS, Sér. Math. vol. 5 (1941) pp. 233-240.
- J. Levitzki, On the radical of a general ring, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 462–466.
- On three problems concerning nil rings, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 913-919.
- —, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 384-409.

HEBREW UNIVERSITY

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of [1] raised some interest. This paper is devoted to the following theorem: If a (finite) connected graph has a positive real number attached to each edge (the length of the edge), and if these lengths are all distinct, then among the spanning¹ trees (German: Gerüst) of the graph there is only one, the sum of whose edges is a minimum; that is, the shortest spanning tree of the graph is unique. (Actually in [1] this theorem is stated and proved in terms of the "matrix of lengths" of the graph, that is, the matrix $\|a_{ij}\|$ where a_{ij} is the length of the edge connecting vertices i and j. Of course, it is assumed that a_{ij} and that a_{ii} = 0 for all i and j.)

The proof in [1] is based on a not unreasonable method of constructing a spanning subtree of minimum length. It is in this construction that the interest largely lies, for it is a solution to a problem (Problem 1 below) which on the surface is closely related to one version (Problem 2 below) of the well-known traveling salesman problem.

PROBLEM 1. Give a practical method for constructing a spanning subtree of minimum length.

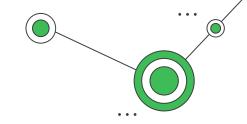
PROBLEM 2. Give a practical method for constructing an unbranched spanning subtree of minimum length.

The construction given in [1] is unnecessarily elaborate. In the present paper I give several simpler constructions which solve Problem 1, and I show how one of these constructions may be used to prove the theorem of [1]. Probably it is true that any construction

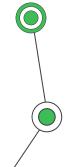
Received by the editors April 11, 1955.

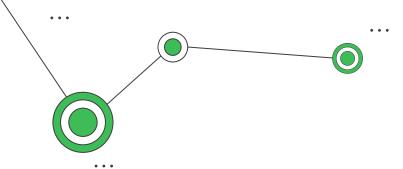
This content downloaded from 73.103.76.200 on Sun, 09 Jun 2024 02:47:26 +00:00 All use subject to https://about.jstor.org/terms

A subgraph spans a graph if it contains all the vertices of the graph.

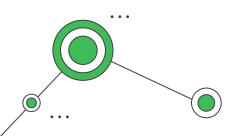


- Process edges, adding edges to the MST smallest-weight first (do not form a cycle on the process).
- The algorithm creates a forest that eventually merges into a single tree.
- Uses Union-Find for each separate component. Starts with |V| independent components.
- Combine sets by adding edges, which reduces the number of components until there is only one.

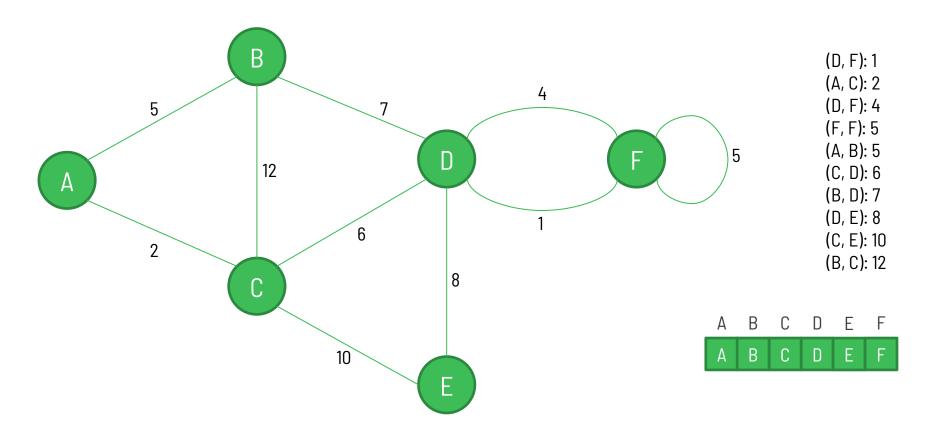


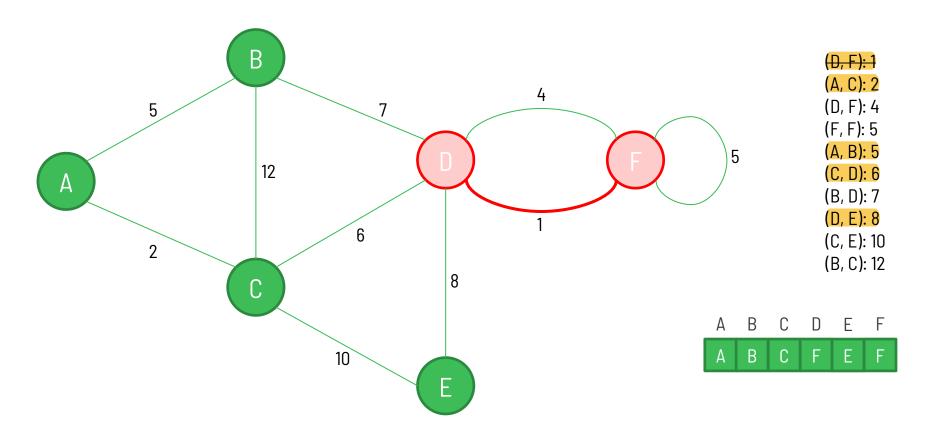


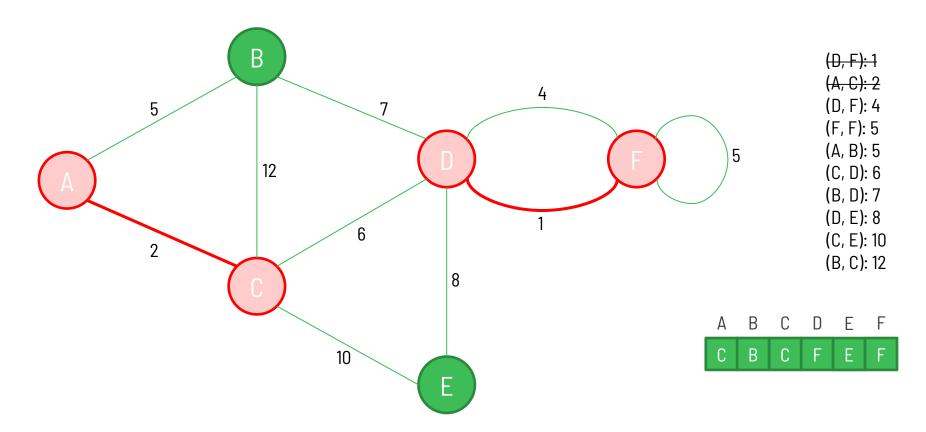
Kruskal's MST Algorithm

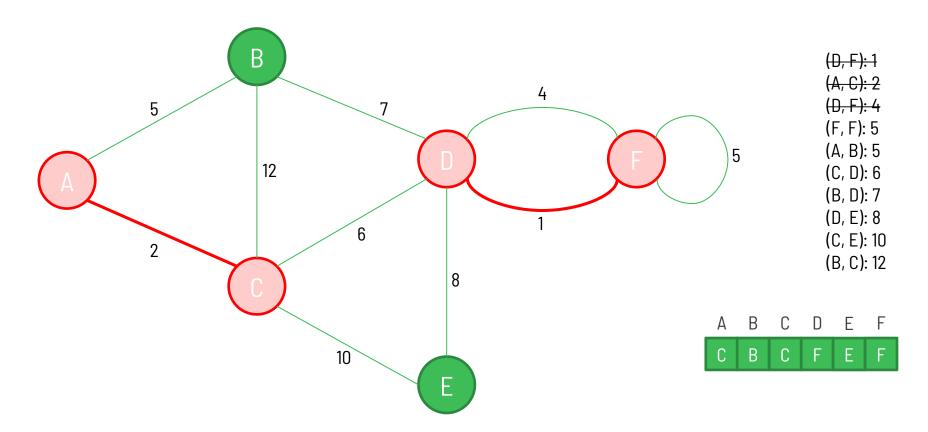


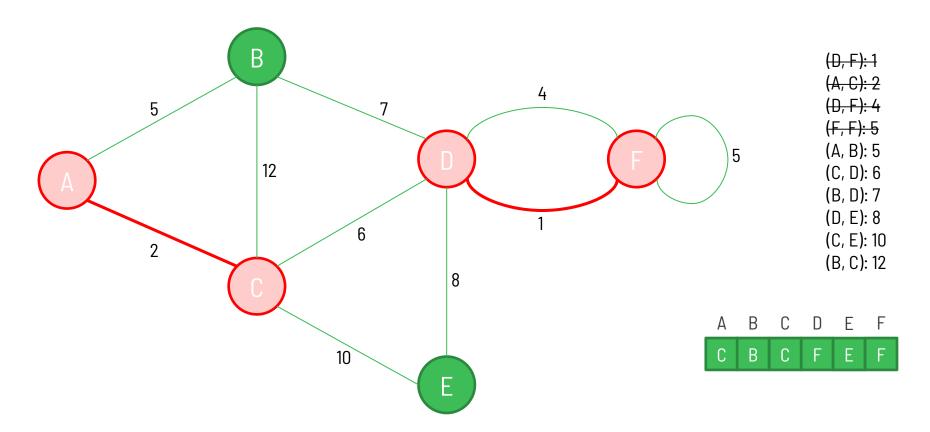
```
algorithm KruskalMST(G(V, E))
   let Q be an empty min-heap
   let UF be a Union-Find with |V| components
   for each e \in E do
      Q.insert(weight(e), e)
   end for
   T \leftarrow \{\}
   while |T| < |V| - 1 do
      (u,v) \leftarrow Q.getMin()
      if u and v are not connected in UF then
         T.insert((u,v))
         UF.union(u,v)
      end if
   end while
   return T
end algorithm
```

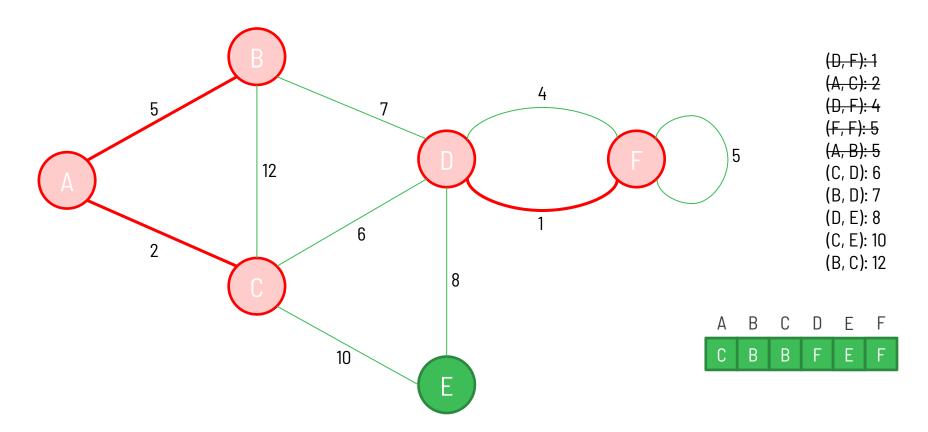


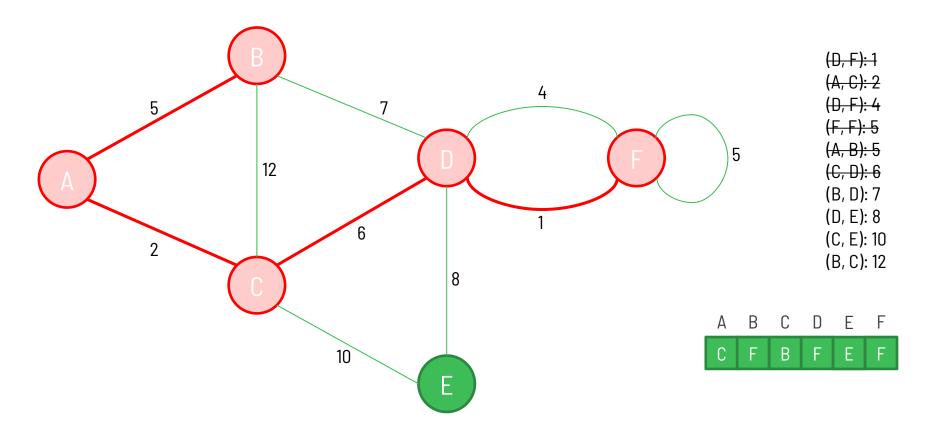


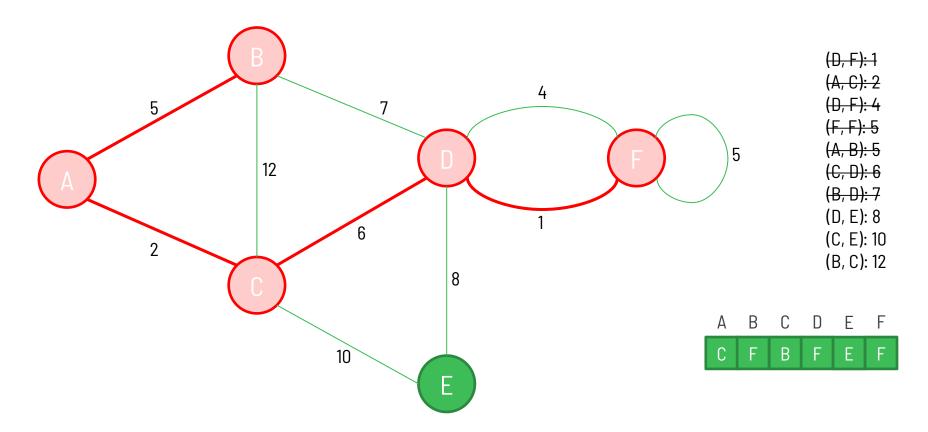


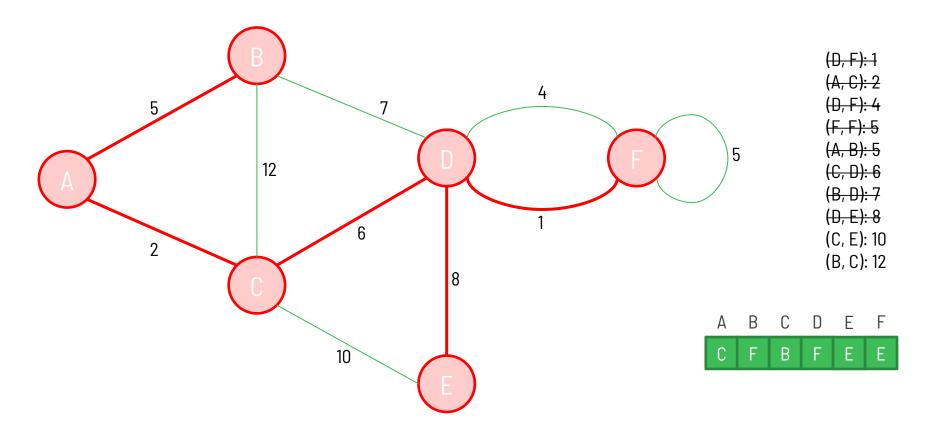


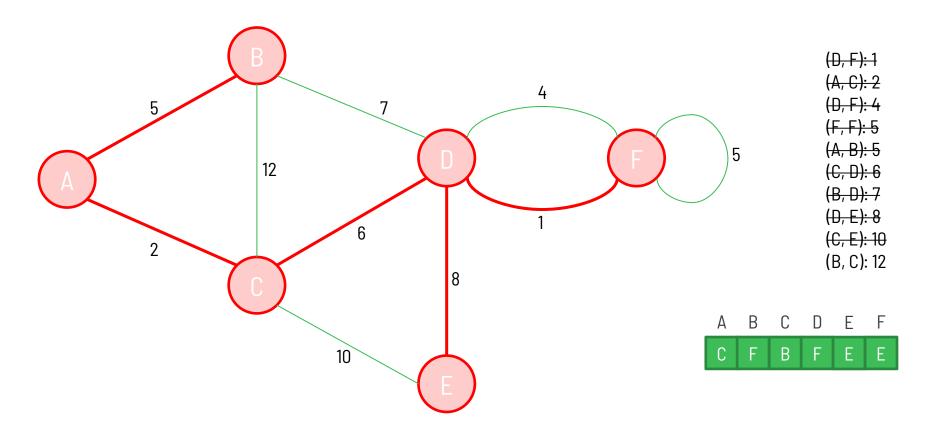


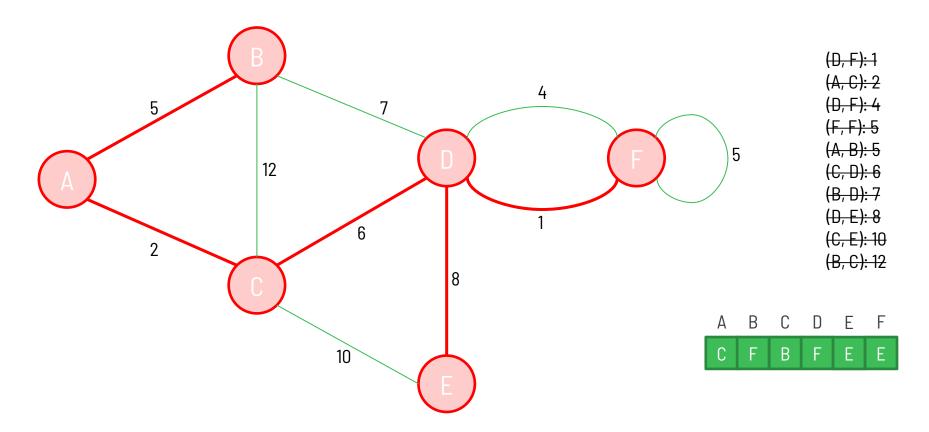


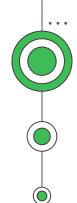












```
algorithm KruskalMST(G(V, E))
   let Q be an empty min-heap
                                                                       O(|V|)
   let UF be a Union-Find with |V| components
   for each e \in E do
                                                                      O(|E|\log(|E|))
      Q.insert(weight(e), e)
   end for
   T \leftarrow \{\}
   while |T| < |V| - 1 do
      (u,v) \leftarrow Q.getMin()
      if u and v are not connected in UF then
                                                             O(|E|\log(|V|))
         T.insert((u,v))
         UF.union(u, v)
      end if
   end while
   return T
end algorithm
```

One More Left

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories

